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Effect of electron-beam momentum spread on cyclotron resonance maser operation
at two resonant frequencies

G. J. Hunter,* B. W. J. McNeil, and G. R. M. Robb
Department of Physics and Applied Physics, University of Strathclyde, Glasgow, G4 0NG, Scotland

~Received 5 February 2001; published 28 August 2001!

We present a theoretical analysis of cyclotron resonance maser~CRM! operation at two resonant frequencies
including the effects of momentum spread in the electron beam. A linear analysis of the system equations is
presented in the limit of small momentum spreads. Numerical solutions to the system equations are also given
and are in agreement with the linear theory. The results predict that for realistic momentum spreads, operation
of the CRM at the higher of the two resonant frequencies should be possible, extending its operating frequency
range. An experiment currently under development at Strathclyde University is described and modeled numeri-
cally.
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I. INTRODUCTION

Cyclotron resonance masers~CRMs! are important
sources of coherent high power microwave radiation@1#. The
radiation source of the CRM is a relativistic electron be
gyrating as it propagates along a uniform magnetic field. T
radiation emitted is usually contained within a cylindric
waveguide structure. When the electrons interact with eit
their spontaneous radiation, or with an injected signal, a
lective instability may bunch the electrons in the phase an
of the electron gyration, or the axial electron position,
both. The bunched electrons may then emit coherently.
collective instability may give an exponential growth of th
radiation field until saturation, where free energy deplet
of the electron beam@2,3# and/or a dephasing of the electro
bunching occurs. In general, for a single waveguide mo
there exist two distinct resonant frequencies. In most circu
stances it is the lower resonant frequency that has the la
growth rate and dominates the exchange of energy from
electrons to the radiation field@4#. However, in an analysis o
the steady state amplifier interaction, which assumes a
form current electron beam source of infinite duration, it w
shown that allowing both the lower and higher resonant
quency fields to evolve, it is possible to suppress the ev
tion of the lower frequency instability@4#. This may allow
the CRM to operate at the higher frequency only. When
CRM has electron pulses as its source, and consequentl
steady state approximation is not valid, the relative propa
tion of the electron pulse with respect to the radiation em
ted becomes important and gives rise to new regimes of
eration@5#. These regimes include super radiance, where
radiation intensity scales as the square of the pulse cur
and ‘‘pulse suppression’’ of the lower resonant frequency
this paper we assume a steady state interaction and inv
gate the effects of an electron beam momentum spread o
operation of the two frequency CRM. This is of importan
to any experimental program of work designed to obse
operation at the higher frequency. A set of equations is
rived which includes the effects of momentum spread on
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electron-radiation interaction. These equations are the s
ject of a linear analysis which yields a logarithmic dispersi
relation. This relation is used to explore the regions of p
rameter space where exponential growth of the lower
higher frequencies occurs. Full numerical solutions of
electron-radiation evolution equations extend the analy
into the nonlinear regime enabling saturation effects a
nonlinear coupling between the lower and higher frequenc
to be investigated. Finally we give details and simulations
an experimental program being developed at Strathcl
University to investigate two frequency operation of CRM

II. THE MODEL

The notation used in our model of the CRM interaction
the same as that used in previous publications@4,5# to which
reference can be made for further details. The resonant
quencies of the CRM interaction may be determined by
intersection of the waveguide and beam modes as define
v25vc

21ki
2c2 andv5vH1kiv i , respectively, wherevc is

the waveguide cutoff frequency,ki is the axial component o
the radiation wave vector,vH is the relativistic cyclotron
frequency andv i is the axial velocity of the electrons. A
typical dispersion diagram shows intersections at two re
nant frequencies in Fig. 1. The radiation at the higher re
nant frequency has an axial group velocity (vg5]v/]ki)
greater than that of the lower resonant frequency and so
call these resonant modes the ‘‘fast’’ and ‘‘slow’’ resona
modes, respectively. Solving the equations of the beam
waveguide modes we obtain expressions for the fast
slow mode resonant frequencies and their correspond
axial wave vectors

v f ,s5vH

16b iA12X

12b i
2

~1!

and

ki f ,s5
vH

c

b i6A12X

12b i
2

, ~2!

where the ‘‘waveguide parameter’’X5vc
2/(vH

2 g i
2), b i

5v i /c, g i5(12b i
2)21/2 and subscripts ‘‘f ’’ and ‘‘ s’’ indi-
©2001 The American Physical Society02-1
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cate the fast and slow modes, respectively. The waveg
parameter must lie within the range 4e3/(e311)2,X,1
wheree35ki f /kis @5#.

The ‘‘device parameter’’V, is defined asV52/X21
5(v fvs2ki fkisc

2)/vc
2 @5#, and is constrained to lie within

the limits 1,V,(11e6)/(2e3).
If V lies towards the minimum of the interval then th

interaction is of the gyrotron type, conversely ifV lies to-
wards the maximum of the interval then the interaction is
the cyclotron autoresonance maser type.

Two other physically meaningful scaling parameters,
fined below, are the fundamental CRM parameterr, analo-
gous to the Pierce parameter of the traveling wave t
~TWT! theory @6# and determining the growth rate of th
electron-radiation instability, and the depletion parameterm,
which describes the effects of free energy depletion of
electron beam@2,3#. The depletion parameter is a measure
the ability of the interaction to convert the energy associa
with the cyclotron motion of the electrons into radiation. F
small values of the depletion parameter only a small fract
of this transverse energy is available. Furthermore, in
single frequency interaction, linear theory shows that ther
a threshold value ofm5m th , above which there can be n
exponential growth of the radiation field@3#.

In a two frequency interaction we are free to choose
principle scaling parameters from ther andm parameters of
the fast or the slow modes@5#. In this paper the fast mod
scaling is chosen, conversion to slow mode scaling be

FIG. 1. ~a! Dispersion diagram showing the intersection of ele
tron beam and waveguide modes.~b! Dispersion diagram illustrat-
ing the different operating regimes for two values of the dev
parameterV for e52 (Vmax54).
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straightforward via the relations:r f5e2rs and m f5ms /e.
Note that r f is bounded within the interval 0,r f
,2m fe

3/(e311). The upper limit ofr f restricts the maxi-
mum growth rate of the radiation and also the efficiency
the device@4#.

A linear and numerical analysis of the coupled two fr
quency mode interaction has been conducted in the ste
state regime when electron momentum spread effects are
glected@4# ~so that initial conditions for electron momen
are identical!. Here, the slow mode has a larger growth ra
except for a small region of parameter space where lin
theory and numerical simulation predict no exponen
growth of the slow mode for a range of the depletion para
eter m f . This range corresponds to that where, due to
relation m f5ms /e, the value of the depletion parameter
the fast mode is below threshold (m f,m th), but that for the
slow mode is above threshold (ms.m th). Hence, choice of
m f from within this region allows for a ‘‘m suppression’’ of
the lower frequency slow mode.

Summarizing, in total four parameters are required to
scribe the CRM coupled interaction between the fast a
slow modes: the axial wave vector ratioe3; the device pa-
rameterV; the CRM parameter for the fast moder f ; and the
depletion parameter of the fast modem f .

This paper investigates the effects of an initial moment
spread in the electron beam on the two frequency opera
of a CRM. The model developed is then used to predict
characteristics of an experiment designed to investigate
frequency CRM operation currently under development
Strathclyde University. It may be expected that a spread
electron beam momentum would have a greater detrime
effect on higher frequency radiation amplification than
that of the lower frequency. The degree of spatial~axial!
bunching and phase bunching required of the electron
greater at higher radiation frequencies, and so the amoun
dephasing, due to a given electron momentum spread, wi
greater at the higher frequency. We use an analytical
numerical analysis to show that, while this is true, it shou
still be possible to achieve CRM operation at the higher
the two resonant frequencies.

The equations describing the two frequency CRM int
action were derived from the coupled Maxwell–Loren
equations which describe the radiation and electron be
evolution@3#. A thin annular electron beam co-propagating
the positiveẑ direction along a cylindrical waveguide con
taining ‘‘cold’’ TEm,n waveguide modes is assumed. T
waveguide is coaxial with a static magnetic fieldB5B0ẑ.
These modes are defined by the cylindrical components
the electric fields

Ef ,s
(r )52

m

2r
F f ,s~z,t !DTEJm~k'r !eiC f ,s1c.c.

Ef ,s
(u)5

ik'

2
F f ,s~z,t !DTEJm8 ~k'r !eiC f ,s1c.c.

Ef ,s
(z)50,

-

e
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where

C f ,s5v f ,st2mu2ki f ,sz, DTE5
1

Jm~xmn8 !Ap~xmn82 2m2!
,

k' is the transverse component of the radiation wave vec
xmn8 is the nth root of Jm8 (k'Rw)50, andRw is the wave-
guide radius. The field is assumed to obey the slowly vary
envelope approximation ~SVEA! so that F f ,s(z,t)
5uF f ,s(z,t)uei j f ,s(z,t) is a slowly varying complex envelop
function determining thez andt dependence of the amplitud
and phase of the radiation field.

The product of the transverse component of the radia
wave vector and the Larmor radius of the gyrating electr
is assumed small, i.e.,k'r L,1. Experimentally, this allows
the electron beam annulus to be coincident with the ma
mum of the transverse mode electric field, maximizing
coupling between electron beam and the radiation mo
Further, it is assumed there are no space charge effects
the electron beam phase evolution is slow with respect to
cyclotron period. The latter allows the Maxwell–Loren
equations to be averaged over a cyclotron period. The e
of beating between the two radiation frequencies is also
glected by averaging the wave equations over a beat pe
which under SVEA is valid forv f*2vs . Further details of
the one and two frequency theory, including the derivation
the evolution equations, can be found in Refs.@3–5#. With
these approximations the coupled Maxwell–Lorentz eq
tions reduce to

df f j

dz̄f

5 p̄f j
2

im f

ū' j
ūi j

~Āfe
if f j1e2Āse

ifsj2c.c.!, ~3!

dfsj

dz̄f

5e p̄sj
2

im f

ū' j
ūi j

~Āfe
if f j1e2Āse

ifsj2c.c.!, ~4!

dp̄f j

dz̄f

5
ū' j

ūi j

2 F ~r f p̄ f j
21!Āfe

if f j

1S r f

e
p̄f j

2e2V D Āse
ifsj1c.c.G , ~5!

dp̄sj

dz̄f

5
ū' j

ūi j

2 F S r f p̄sj
2

V

e D Āfe
if f j1S r f

e
p̄sj

2e D Āse
ifsj1c.c.G ,

~6!

dū' j

dz̄f

52
m f

ūi j

~Āfe
if f j1e2Āse

ifsj1c.c.!, ~7!

dūi j

dz̄f

52
ū' j

r f

ūi j

S Āfe
if f j1

1

e
Āse

ifsj1c.c.D , ~8!
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dĀf

dz̄f

5b̄f , ~9!

dĀs

dz̄f

5eb̄s, ~10!

where

j 51, . . . ,N, z̄f5
z

l gf

,

f f ,s5v f ,st2ki f ,sz1tan21S uy

ux
D2~m21!u02

p

2
,

ū'5
u'

^u'0&
, ūi5

ui

^ui0&
, u'5gv' , ui5gv i ,

Āf ,s5
ie^u'0&ki f ,s

2 DTEJm21~k'R0!

4me^ui0&
2k'v f ,sr f ,s

2
F f ,s ,

p̄f ,s5
ki f ,s

k'
2

1

r f ,s
pf ,s , pf ,s5

1

v i
~v f ,s2vH!2ki f ,s ,

kH05
gvH

^ui0&
,

r f ,s5S e

8e0mec
2

ki f ,s
2

k'
2

^u'0&
2

^ui0&
3

ID TE
2 Jm21

2 ~k'R0!D 1/3

,

n f ,s5
ki f ,s

kH0

^u'0&
2

^ui0&
2

, m f ,s5
r f ,s

n f ,s
, l gf

5
ki f

k'
2 r f

,

b̄f ,s5K ū'

ūi
e2 if f ,sL and

^•••&5
1

N (
j 51

N

~••• !

and j is the electron index number,N is the total number of
electrons in a beat period, subscripts' andi represent vector
components perpendicular and parallel to the wavegu
axis, r L is the Larmor radius of a gyrating electron,g is the
electron relativistic factor, (R0 ,u0) are the polar coordinate
with respect to the waveguide axis of the electron guid
centers, (v' ,v i) are the electron momentum components,l gf

is the gain length for the fast mode in absence of elect
momentum spread@4# and subscripts 0 indicate initial value
on entering the interaction region atz̄f50. The geometry of
the electron beamlet illustrating the geometric variables
shown in Fig. 2. We assume that there is no cavity feedb
so that the system acts as a single pass amplifier.

Note that in the continuous limit the average over the b
period may be written as
2-3
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^•••&5
1

nf ,s2pE0

nf ,s2p

df f ,s0E
2`

`

dū'0E
2`

`

~••• !

3g~ ū'0 ,ūi0!dūi0

5
1

nf ,s2pE0

nf ,s2p

df f ,s0E
2`

`

~¯ !h~ p̄f ,s0!dp̄f ,s0 ,

~11!

where subscriptf ,s is chosen as appropriate,nf ,s is the inte-
ger number of fast/slow periods in a beat period (e3

5nf /ns) @4# and the functionsg(ū' ,ūi) and h( p̄f ,s0) are
normalized density distribution functions with the depend
variables being functions of the initial conditionsf f ,s0 and
(ū'0 ,ūi0) or p̄f ,s0. In general, the relationship between t
normalized density distribution functionsg(ū'0 ,ūi0) and
h( p̄f ,s0) is not obvious, as the mapping (ū' ,ūi)→ p̄f ,s for
each electron is obtained from the definition ofp̄f ,s and may
be expressed as a function of the scaling parameters as g
in the Appendix.

III. LINEAR THEORY

We begin with a linear analysis of the coupled system
Eqs. ~3!–~10!. This is performed for the case of a finit
spread in the scaled momentum of the electrons.

For convenience we make the following change of va
ables:

Af85Āfe
id f z̄f f f85f f2d f z̄f pf85 p̄f2d f ,

As85Āse
i edsz̄f fs85fs2edsz̄f ps85 p̄s2ds ,

where d f ,s5^ p̄f ,s0& is the mean detuning of the electro
beam from the resonance.

In order to describe a spread in the electron momen
about the initial mean of the beam ,^ūi ,'0&51, a distribution
parameter (Dūi ,'0) is introduced, which is assumed sma

FIG. 2. A schematic of an electron beamlet showing the relev
geometry.
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relative to the mean. In this way the initial electron mome
tum spread may be modeled using

ūi ,'0 j
511Dūi ,'0 j

~12!

for some symmetric distribution about zero ofDūi ,'0 j
,

(Dūi ,'0 j
!1) over the electron indexj.

Assuming subscriptj where appropriate, the equilibrium
values of the dependent variables are

Af ,s08 50 ^e2 if f ,s08 &50 pf ,s08 5 p̄f ,s02d f ,s

ūi ,'0511Dūi ,'0

corresponding to a uniformly distributed, unbunched bea
including momentum spread, with no initial field excitatio
at the beginning of the interaction regionz̄f50.

Linearizing around these equilibrium values the dep
dent variables are

Af ,s8 5Af ,s18 ,

f f85f f 08 1f f 18 1pf 08 z̄f ,

fs85fs08 1fs18 1eps08 z̄f ,

pf ,s8 5pf ,s08 1pf ,s18 ,

ūi ,'511Dūi ,'01ūi ,'1 ,

where all subscripts ‘‘1’’ denote small perturbations from t
equilibrium values subscripted ‘‘0’’ atz̄f50. Substituting for
these variables into Eqs.~3!–~10! we obtain, to first order

df f 18

dz̄f

5pf 18 2 i ~m fAf 18 eif f 08 eip f 08 z̄f

1emsAs18 eifs08 ei eps08 z̄f2c.c.!, ~13!

dfs18

dz̄f

5eps18 2 i ~m fAf 18 eif f 08 eip f 08 z̄f

1emsAs18 eifs08 ei eps08 z̄f2c.c.!, ~14!

dpf 18

dz̄f

5~~r f@pf 08 1d f #21!Af 18 eif f 08 eip f 08 z̄f

1~ers@pf 08 1d f #2e2V!As18 eifs08 ei eps08 z̄f1c.c.!,

~15!

nt
2-4
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dps18

dz̄f

5S S r f@ps08 1ds#2
V

e DAf 18 eif f 08 eip f 08 z̄f

1~ers@ps08 1ds#2e!As18 eifs08 ei eps08 z̄f1c.c.D ,

~16!

dū'1

dz̄f

52~m fAf 18 eif f 08 eip f 08 z̄f1emsAs18 eifs08 ei eps08 z̄f1c.c.!,

~17!

dūi1

dz̄f

52~r fAf 18 eif f 08 eip f 08 z̄f1ersAs18 eifs08 ei eps08 z̄f1c.c.!,

~18!

dAf 18

dz̄f

52 i ^f f 18 e2 if f 08 e2 ip f 08 z̄f&1^ū'1e2 if f 08 e2 ip f 08 z̄f&

2^ūi1e2 if f 08 e2 ip f 08 z̄f&1 id fAf 18 , ~19!

dAs18

dz̄f

52 i e^fs18 e2 ifs08 e2 i eps08 z̄f&1e^ū'1e2 ifs08 e2 i eps08 z̄f&

2e^ūi1e2 ifs08 e2 i eps08 z̄f&1 i edsAs18 . ~20!

Note that for the purposes of linearization the termsDūi ,'0
are treated as first order as it has previously been assu
that all spreads are small, i.e.,Dūi ,'0!1.

The linearized system, Eqs.~13!–~20!, may be solved us-
ing the method of Laplace transforms, the complex Lapl
transform being defined as

X̃~l!5E
0

`

X~ z̄f !e
2 il z̄fdz̄f . ~21!

Applying the transform to the dependent variables, solv
for the transformed field variables and inverting the tra
form we obtain a solution for the fields of

Af ,s8 ~ z̄f !5 (
n51

3

Cn exp~ il f ,sn
z̄f !, ~22!

whereCn is a complex constant and thel f ,sn
are the roots of

the dispersion relations

l f2d f1~r f22m f !E
2`

1` h~pf 08 !

~l f1pf 08 !
dpf 08

1E
2`

1`~12r f~pf 08 1d f !!h~pf 08 !

~l f1pf 08 !2
dpf 08 50 ~23!

and
03650
ed

e

g
-

ls2eds1e2~rs22ms!E
2`

1` h~ps08 !

~ls1eps08 !
dps08

1e3E
2`

1`~12rs~ps08 1ds!!h~ps08 !

~ls1eps08 !2
dps08 50.

~24!

For convenience, the continuous limit average of Eq.~11!
has been used where the initial spread in electron momen
gives a normalized density distribution ofh(pf ,s08 ). From Eq.
~22!, exponential growth of the fields can then be expecte
the l f ,s from the solutions of Eqs.~23! and ~24! have a
negative imaginary part. As expected, the fast and s
modes are uncoupled in the linear regime of radiation e
lution, each dispersion relation being independent of
other mode.

For an electron beam with no momentum spread the
tribution function h(pf ,s08 ) may be substituted by a Dirac
delta functiond(pf ,s08 ). The dispersion relations~23! and
~24! then reduce to those derived previously for a cold el
tron beam@4#.

The dispersion relations are now investigated for the s
cific case of uniform rectangular distributions inpf ,s8 of half
width s f ,s

h~pf ,s08 !5H 1

2s f ,s
2s f ,s<pf ,s08 <s f ,s

0 elsewhere.

~25!

With these distributions, the fast and slow mode dispers
relations~23! and ~24! reduce to the logarithmic forms

~l f2d f !~l f
22s f

2!1r fl f2
m f~l f

22s f
2!

s f
lnS l f1s f

l f2s f
D

1~12r fd f !50, ~26!

~ls2eds!~ls
22e2ss

2!1e2rsls

2
ems~ls

22e2ss
2!

ss
lnS ls1ess

ls2ess
D1e3~12rsds!50.

~27!

Where there is no spread (s f ,s→0) then, as required, the
dispersion relations reduce to those previously derived fo
cold electron beam@3,4#.

In the low efficiency limit ofr f ,s ,m f ,s→0 the following
dispersion relations are obtained:

~l f2d f !~l f
22s f

2!1150, ~28!

~ls2eds!~ls
22e2ss

2!1e350. ~29!

These dispersion relations are identical in form to those
tained for the Compton free electron laser when momen
spread effects in the electron beam are taken into acco
e.g., Ref.@7#. In the limit d f ,s→0 there is a threshold in the
2-5
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spread ofpf ,s8 , at s f ,s5(27/4)1/6, above which no complex
roots exist and there can be no exponential growth of
fields. Furthermore, it can be shown that maximum gain
curs when the detuning is equal to the spread,d f ,s5s f ,s .

In Fig. 3 the negative imaginary part of the complex ro
obtained from a solution of the full dispersion relation~26!,
which determines the exponential gain for the fast mode
plotted as a function of electron beam detuningd f and spread
s f , for given values ofr f and m f . Numerical solutions of
the logarithmic dispersion relations were obtained by us
the mathematical computer package MAPLE@8#. As with the
low efficiency limit of above, it can be seen that maximu
gain occurs for an electron detuning parameter ofd f's f . A
similar plot is obtained for the slow mode and, similar
maximum growth is obtained fords'ss .

A comparison of the growth rates of the competing f
and slow modes in the presence of electron beam momen
spread is now presented. Of particular interest is the effec
such a spread in them-suppression regime where, for ze
momentum spread, the fast mode has a larger growth
than the slow mode. It is assumed that the density distr
tion of electrons in momentum space,g(ū' ,ūi), results in a
rectangular distributionh( p̄f ,s8 ) in p8 space of the form~25!.
The relationship betweens f and ss is obtained from the
analysis of Appendix A. As suggested by the above anal
and the results of Fig. 3, a detuningd f ,s5s f ,s is chosen in an
attempt to maximize the gain for both modes. The values
d f ,s which actually maximize these gains may be sligh
different, however the results presented are not significa
affected.

The difference between the fast and slow negative ima
nary parts of the complex roots, Im(l f2ls), obtained from a
solution of the full dispersion relations~26! and~27!, is plot-
ted as a function ofm f for four values of electron momentum
spread and is shown in Fig. 4 . For negative values of th
difference, the slow mode has the larger growth rate
would dominate any interaction for equal input fields. F
positive values the higher frequency fast mode will dom
nate. This has previously been called them-suppression re-
gime @4#. For the case of no electron momentum spre
(s f50), it is seen that on increasingm f from zero, suppres-
sion of the slow mode begins to take effect atm f'0.5. On
increasing m f further, both roots are nonzero untilm f
(5m th)'0.68 after which there are no complex roots for t
slow mode (ls50) and the value plotted is entirely due

FIG. 3. Gain curve for the fast moder f50.0681,m f50.252.
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the fast rootl f . For values ofm f*1.0, l f50 and there can
be no exponential growth of either the slow or the fast mo
For s f50 then, m suppression of the slow mode occu
between the limits 0.5,m f,0.97. Note that this range ofm f
for m suppression is extended below the minimum of th
predicted in Ref.@4#. This is becausem suppression was
defined to start at the threshold value forzerogrowth of the
slow mode. This value here is'0.68. In the region 0.5
<m f<0.68 of Fig. 4 slow mode growth exists but is le
than that of the fast mode.

When the effects of electron momentum spread are
cluded, s f50.5,1.0,1.5~and we allow optimum detuning
d f ,s5s f ,s) we observe that, as would be expected from
discussion above, the growth rates of the fields are redu
as is the range over whichm suppression of the slow mode
possible, quickly reducing the interval to 0.5&m f&0.8. The
results shown in Fig. 4 are in good agreement with grow
rates calculated via numerical integration of Eqs.~3!–~10!.

IV. COMPARISON WITH NUMERICAL MODEL

The growth rates predicted from the solutions to the d
persion relations~26! and~27! are now compared with thos
obtained from a full numerical solution to Eqs.~3!–~10!. In
carrying out this comparison, it was found necessary to a
ficially ‘‘switch off’’ the evolution of one of the modes in the
full numerical solution as a mode coupling is quickly esta
lished and the interaction departs from that of linear the
well before saturation of the fast mode. With such artific
mode decoupling it is found there is a good agreement
tween the numerical and linear models in determining
growth rates over a wide range of parameter space.

An example of this agreement is shown in Fig. 5 whe
the growth rates for the fast mode are plotted as function
spreads f . Plot ~a! shows the analytical solution of the linea
theory and plots~b! and ~c! show two numerical solutions
The first numerical solution@Fig. 5~b!# assumes a uniform

FIG. 4. Im(l f2ls) againstm f for the fast and slow mode
When Im(l f2ls).0 the system is in them suppression regime
where the fast mode growth rate is greater than the slow mo
r f50.1; e353; d f ,s5s f ,s .
2-6
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EFFECT OF ELECTRON-BEAM MOMENTUM SPREAD ON . . . PHYSICAL REVIEW E64 036502
rectangular distribution inp̄f of half width s f of the form
~25! and it is seen that the growth rates of this numeri
model agree very well with that of linear theory. The seco
numerical solution@Fig. 5~c!# is for a uniform rectangular
distribution in bothū' andūi of equal widths'5s i . These
spreads in (s' ,s i) correspond to a spread ins f via the
relation~A9! of Appendix A. A rectangular distribution func
tion in (ū' ,ūi) does not, however, map into the unifor
rectangular distribution inp̄f as used in the linear theory. Th
difference between Figs. 5~a! and 5~c! is attributed to this.

V. EXPERIMENTAL PARAMETERS

The work presented above attempts to model more re
tically two frequency CRM amplifier experiments under d
velopment at the University of Strathclyde. Using these
sults it is hoped to find regions of parameter space where
possible to observe the predicted higher frequency CRM
eration. In this section we give numerical solutions to t
scaled Eqs.~3!–~10! demonstrating the effects of momentu
spread on the two frequency interaction of the experime
The equations are solved with initial conditions correspo
ing to an amplifier configuration, with initial fields given b
Āf ,s( z̄f50)5Āf ,s0, whereĀf ,s0 are constants; the electron
are initially distributed evenly in phase with zero bunchi
so that ^exp(2iff,s0)&50 @4#; and the electron momentum
spread distribution functiong(ū' ,ūi), of Eq. ~11!, is now
assumed to be a Gaussian in bothū' andūi with correspond-
ing widths s',i . The real input–output radiation power
calculated via the complex Poynting vector@9#, the definition
of the fields and the scaling used in Eqs.~3! - ~10!.

The experimental parameters are given below in Tab
along with the corresponding scaled parameters.

Figure 6 shows the effect of momentum spread on
resonant (d f ,s50) operation of the two frequency CRM i

FIG. 5. A comparison between growth rates as calculated via
linear theory and numerical integration forr f50.0681,m f

50.1,d f ,s50,e353. ~a! Linear theory,~b! rectangular distribution

over p̄f of width s f , ~c! rectangular distribution overū',i of widths
s'5s i .
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them suppression regime. The momentum spreads were
culated numerically from electron beam modeling work
the thermionic cathode to be used in the experiment. T
work predicts that the momentum spread may be attribu
mainly to the velocity spread of the beam of which the ax
velocity spread is estimated to be not more than'1% @10#.
The experimental interaction was modeled for different v
ues of spread for the transverse component of the elec
momentum and it is seen thatm suppression of the slow
mode persists. For larger transverse momentum spread
growth rate of the fast mode interaction is reduced an
longer interaction region is required to reach saturati
However, if the spread in the axial momentum componen
increased from 1% to 2–3%, it has been observed that
fast mode intensity is sharply reduced. This result, and
expression for the scaled momentum spread in Eq.~A9!, sug-
gests that the sensitivity of the system to axial moment
spread increases as the device parameter,V, tends towards

e

TABLE I. Proposed experimental parameters for the slow mo
suppression and stimulated emission experiments.

m suppression
Stimulated
emission

Magnetic guiding field 0.28 T 0.29 T
Electron beam current 39.5 A 36 A
Electron beam energy 367 keV 466 keV
Relativistic Lorentz factor (g) 1.72 1.91
Beam pitch factor (a) 0.15 0.30
Fast mode frequency 17.3 GHz 17.0 GHz
Slow mode frequency 8.0 GHz 8.5 GHz
TE11 cutoff frequency 6.72 GHz 6.72 GHz

Wave number ratio (e3) 3.6 3.0
Device parameter (V) 1.52 1.4
Fundamental CRM parameter (r f) 0.048 0.068
Free energy depletion (m f) 0.71 0.252

FIG. 6. Two mode evolution in them-suppression regime with
electron beam momentum spread~a! s i ,'50, ~b! s i51%, s'

510%, ~c! s i51%, s'520%, r f50.048,m f50.71,e353.6,V

51.52: Āf o50.0222('400 W! , Āso50.0203('400 W!.
2-7
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the CARM limit, (V→Vmax). This is in agreement with
other CARM studies where performance is known to dep
on the axial momentum spread when operating in the CA
regime, e.g., Ref.@11#.

Stimulated emission of radiation at the high fast mo
frequency, given only an injected signal at the lower sl
mode frequency@4#, was studied with an electron beam m
mentum spread into the nonlinear regime. This stimula
emission is greatest for a harmonic interaction, i.e., whene3

is an integer.
A cold beam interacting with input intensitiesuĀs0u2

'3.2931024 ('400 W! and uĀf 0u2 5 0 is shown in Fig.
7~a!. The lower frequency saturates atuĀsu2'0.52 ('600
kW! and the higher frequency has a maximum ofuĀf u2
'0.23 ('250 kW!.

When momentum spread is introduced the output inte
ties are seen to reduce as expected from Figs. 7~b! and 7~c!.
The maximum intensities@for a momentum spread ofs'

510% ands i51% Fig. 7~c!# are uĀsu250.46('500 kW!

and uĀf u250.001('1 kW!. It should be noted that by in
creasing the input intensity at the lower frequency to*4
kW, output at the higher frequency may be increased to*10
kW.

VI. CONCLUSIONS

An analysis of the cyclotron resonance maser~CRM! op-
erating at two resonant frequencies and including the eff
of electron momentum spread has been presented. The l
analysis yielded a logarithmic dispersion relation to give
linear growth rates for both resonant frequencies. These w

FIG. 7. Stimulated emission at the high frequency interact
point for various momentum spreads:~a! s i ,'50, ~b! s i50.5%,

s'55%, ~c! s i51%, s'510%: input power'400 W (uĀs0u2

53.2931024). Fast mode output~a! uĀf umax
2 '0.23('250 kW!, ~b!

uĀf umax
2 '0.01 ('12 kW!, ~c! uĀf umax

2 '0.001 ('1 kW!.
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found to be in good agreement with those calculated vi
numerical integration of the system equations. The numer
simulations have allowed a study of the nonlinear behav
of the CRM, in particular the effect of momentum spread
them suppression and ‘‘stimulated emission’’ regimes of o
eration for forthcoming experiments. The simulations pred
that, with modest beam quality, it should be possible to g
erate significant output at the higher resonant frequency
both regimes of operation.

ACKNOWLEDGMENTS

The authors would like to thank the EPSRC for support
G.J.H. and B.W.J.McN., and the Royal Society of Edinbur
for support of G.R.M.R. The authors’ thanks are also e
tended to A. R. Young for providing numerical estimates
expected experimental electron beam quality.

APPENDIX

By expressing the physical parameters of the system
terms of the scaled parameters

kf5
vce

3

c
AS ~V221!

e622Ve311
D , ks5

kf

e3
, ~A1!

v f5vc

~e3V21!

A~e622Ve311!
, vs5vc

~e32V!

A~e622Ve311!
,

~A2!

^b i0&5
~e22e11!~e11!

~e21e11!~e21!
AS V21

V11D , ~A3!

vH5vc

A~e622e3V11!

~e21e11!~e21!
, ~A4!

^g0&5~e21e11!~e21!

3A m fe
3~V11!

~e622e3V11!~2m fe
32r f~e311!!

~A5!

and by using the definition ofp̄f ,s , it is possible to obtain the
functional relationp̄f ,s(ū' ,ūi)

p̄f5
g

ūi

e2~e3V21!

r f~e311!
A~2m fe

32r f~e311!!~V11!

m f~e622Ve311!

2
1

ūi

e3~V11!

r f~e311!
2

e6~V221!

r f~e622Ve311!
, ~A6!

n
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p̄s5
g

ūi

~e32V!

r f~e311!
Ae~2m fe

32r f~e311!!~V11!

m f~e622Ve311!
2

1

ūi

e2~V11!

r f~e311!
2

e2~V221!

r f~e622Ve311!
, ~A7!

where

g5A11ū'
2 r f~e311!

2m fe
32r f~e311!

1ūi
2 m fe

3~e311!2~V21!

~e622Ve311!~2m fe
32r f~e311!!

. ~A8!
-

fo
An estimate of the spread inp̄f ,s can then be made by as
suming the small spreads inūi ,' . Assuming the maximum
range of values is given byūi ,'

(max)'11s i ,' , where s i ,'
!1 and are positive definite, then we may substitute
ūi ,'

(max) into Eqs.~A6! and ~A7! and expand to first order in

s i ,' . Thus, an estimate of the spread inp̄f ,s , defined ass f ,s
is given by
ry

s

.

.

03650
r

s f'
Ve321

m f~e321!
s'1

e3~V21!

r f~e321!
s i , ~A9!

ss'
~e32V!

em f~e321!
s'1

e2~V21!

r f~e321!
s i . ~A10!
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